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Notes on Digital Communications - NPTEL Video Lectures
Surya Teja Paruchuri∗,

∗ Email: surya@terpmail.umd.edu

Abstract—This notes wad designed as a brief review material from my
understanding of the Digital Communication Lectures.

I. INTRODUCTION

1) The non-deterministic nature or random nature of the channel is
due to the presence of the noise. (Types- Natural like lightning,
Man-made like switching.)

2) Predominant noise is Thermal Noise. Random, but have statis-
tical information about this noise. This is modeled as Gaussian
Noise, thus resulting in AWGN channel.

3) White noise- Means that there is no correlation between differ-
ent instances of the sample.

4) source coding is possible because samples might not be
equiprobable, or are correlated.

5) advantages of digital communications: Cheaper due to digital
electronics which are also programmable, can achieve near
capacity rates.

6) An important parameter in Channel is Noise Variance.

II. SAMPLING

1) Band-limited signal- A signal whose

H(f) = 0, for|f | > ω

Similarly, a stochastic process is band-limited if the power
spectral density is limited to a certain portion of spectrum.

2) recovering from the samples, sampled at greater than Nyquist’s
sampling rate:

a) first interpolate and then pass through an low pass filter.
b) And the best filter would have an impulse response of the

form
h(t) =

sin(πfst)

πfst

III. QUANTIZARTION, PCM AND DELTA MODULATION

1) For a uniform quantizer, with a very small ∆ and that the PDF
of the samples is smooth, then

fQ(q) =
1

∆

and thus

E[q2] =
∆2

12
,

which is the energy of the quantization noise.
2) Non-uniform Quantization = non-linear transformer (compres-

sor) + uniform quantizer.
3) The inverse for compressor is expander.
4) logarithmic compressors are popular compressors: µ -law com-

pressor (USA, Canada) and A-Law compressor (Europe).
5) Delta Modulation- uses only 1 bit for representation of the

change. But the samples should have high correlation, i.e, the
signals doesn’t change abruptly. And the distortion in very
high slope region is called Slopeoverload distortion, and the
distortion in almost constant signal region is called granular
distortion.

IV. PROBABILITY AND RANDOM PROCESSES-1

1) another definition: A,B are independent events if P (A/B) =
P (B).

V. PROBABILITY AND RANDOM PROCESSES-2

Functions of Random Variables:
1) x is a RV, and let y=g(x).
2) if y= ax+b;then

FY (y) = FX(x ≤ y − b
a

)

3) Let X,Ybe the vector of RVS such that X1 =
f1(Y 1, Y 2, Y 3, ..Y N),X2 = f2(Y 1, Y 2, Y 3, .., Y N),X3 =
f3(Y 1, Y 2, Y 3, .., Y N),and so on, and also Y 1 =
g1(X1, X2, X3, .., XN), Y 2 = g2(X1, X2, X3, .., XN),
Y 3 = g3(X1, X2, X3, .., XN),and so on. And let F,G
represent the vector of f and g functions, then the Jacobian
Matrix is as shown below:

J =

∣∣∣∣∣∣∣∣∣
∂f1
∂y1

∂f2
∂y1

. . .
∂fN
∂y1

. . . . . . . . . . . . . . . . . . . . . . . .
∂f1
∂yN

∂f2
∂yN

. . .
∂fN
∂yN

∣∣∣∣∣∣∣∣∣
then

PY (Y 1, Y 2, Y 3, ....Y N) = PX(f(y)).|J |

4) Quick Tip: |A−1| = 1

|A| .
5) nth Moment:

E[Xn] =

∫ +∞

−∞
xn.pX(x)dx

6) nth Central Moment:

E[(X −X)n] =

∫ +∞

−∞
(x−X)n.pX(x)dx

7) Mean is the 1st Moment.
8) Variance

σ2
X = E[(X −X)2] = E[X2]−X2

9) Joint Moment: E(Xk
1 , X

n
2 )

10) Covariance (X1,X2):

= E[(X1−X1)(X2−X2)] = E[X1X2]−X1.X2 (1)

11) covariance matrix for X1,X2,X3,...XN:µ1,1 µ1,2 . . . µ1,N

. . . . . . . . . . . . . . . . . . . . . . . .
µN,1 µN,2 . . . µN,N


where µ(i,j) = covariance of Xi,Xj.

Random or Stochastic Process:
1) Random Processes- types: continuous time and discrete time.
2) Random process or stochastic process is function of random

variable with respect to time, i.e, the output random variable
changes with respect to time.c©Surya Teja ParuchuriUpdated on September 27, 2017
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3) If t1 ¿ t2 ¿ t3 ¿ . . . ¿ tn, where t is the time, and Xt1,Xt2, Xt3,
dots Xtn, then we define the random process using the joint
PDF.

4) if

pXt1,Xt2,....Xtn(xt1, xt2, ...xtn)

= pXt1+δ,Xt2+δ,....Xtn+δ(xt1 + δ, xt2 + δ, ...xtn+ δ) (2)

, then this process is strictly stationary.
5) Correlation (Auto):

Φ(t1, t2) = E(Xt1, Xt2) =

∫ ∞
−∞

∫ +∞

−∞
xt1.xt2p(xt1, xt2)dt1dt2

(3)

6) if the random process is stationary, then Φ(t1, t2) = Φ(t1 +
t, t2 + t), where t is some random time duration. This is a
function of t1-t2, and thus Φ(t1 − t2) = Φ(t). And if some
X(t)m which is not strictly stationary, but still satisfies this
condition, then X(t) is said to be Wide-Sense Stationary.

7) For a complex valued Random Variable:

Φ(t1, t2) =
1

2
.E[Xt1, X

∗
t2]

8) Random processes X(t), Y(t) are
a) independent if:

pX,Y (xt1, xt2, xt3, . . . , xtn, yt1‘yt2‘, . . . , ytn‘)

= pX(xt1, xt2, . . . , xtn).pY (yt1, yt2, . . . , ytn) (4)

b) uncorrelated if:

E(xt1, yt2) = E[xt1].E[yt2]∀t1, t2

9) Power Spectral Density:

Φ(τ)⇐⇒ Φ(f) =

∫ ∞
−∞

Φ(t).e−j2πfτdτ

and at τ = 0,

Φ(0) =

∫ +infty

−infty
Φ(f).df = E(|Xt|2) ≥ 0

10) Power Spectral Density of the output signal at a LTI filter:

ΦY,Y (f) = ΦX,X(f)|H(f)|2

11) In a White Gaussian Noise, the PSD is 1,which means in time
domain, it is an impulse function, and thus clearly there is no
correlation between two samples.

VI. CHANNELS AND THEIR MODELS-1

We begin by assuming that x(t) undergose a transformation with a
function g(n) and then some noise is added to this signal, to represent
the complete channel.

1) Binary symmetric channel (BSC): simplest. TX 0 or 1 and Rx
0 or 1.
This can be represented by the famous Butterfly diagram. Let
Probability of error = p. Then P (0/1) = p = P (1/0) and
P (0/0) = 1 − p = P (1/1). We cannot compare two BSC
with their p values known,as a simple transformation can make
a worse channel better than the other.

2) Binary Channel: Similar to BSC, but P (0/1) = pand
P (1/0) = q,
wherep 6= q. Examples: Telegraph channels and LAN chan-
nels.

3) Binary Erasure Channel: Bits are not received erroneously, but
they are received in either correct form or corrupted form i.e

erased form. So the output can be one of the three states
0,1,erased(e). Example: +5V is used for 1 and -5V is used
for 0; and then if receiver receives a value close to 0V then it
says that the channel is erased. Another use: In puncturing the
data.

4) Binary error and erasure channel: Bits could be erased or could
be received in error i.e (0/1).

5) Discrete Memoryless Channel:Is a generalization of all the
above channels. Discrete because the input alphabet is set of N
discrete symbols. Similarly output alphabet is also discrete with
say M symbols. Thus we will have a probability transition
matrix :
|P (

yj
xi

)|, where1 ≤ j ≤Mand1 ≤ i ≤ N
The present symbols don’t depend on the past values.

6) If while transmitting (i+1)th symbol, we have information about
what symbol was received during ith symbol transmission, then
the channel is modeled as having feedback. Shannon has proved
that there is no capacity gain in a feedback channel, compared
to a channel without feedback channel

7) Other Channels models: Continuous Channels, Waveform
Channels, Linear filter channels/ channels with memory, and
wireless fading channels.

VII. CHANNELS AND THEIR MODELS -2

1) Discrete time, but continuous values channels: AWGN channel-
yi = xi+zi, where z is the white noise, gaussian with variance
σ2, i.e the Z’s RV at times are independent and identical
distributed RVs.

2) Waveform Channels: Continuous time continuous value chan-
nels: continuous Channels-
y(t) = x(t) + z(t), and z is white noise with variance N0/2.

3) AGN channels with memory: yi = xi + zi, but here Z is not
white. Thus there is a correlation in time, but still gaussian
noise

4) Linear filter channels: Now we consider a channel where we
also include a g(n)orh(n) transformation function. Thus we
have yi = xi ∗ gi + zi, where z is additive white gaussian
noise.

5) AWGN channel can be represented in the form of a Linear
filter Channel, and vice versa.

6) Wireless Channel/Fading Channels/Multi-path Channel: com-
ponents

a) LOS component.
b) Reflections.
c) Difraction.
d) scattering.

7) For a strictly LOS channel, The channel gain G ∝ 1

( d
λ

)2
.

8) In general G ∝ 1

( d
λ

)µ
, where 2 ≤ µ ≤ 4.

9) delay spread - The time period between the arrival of first multi-
path component and the arrival of the last significant multi-path
component. Related to coherence bandwidth.

VIII. INFORMATION THEORY-1

Elements of Information Theory:
1)

Probabilityofevent ∝ 1

Codewordlength

∝ 1

AmountofInformationacquired
(5)
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2) Example: Consider an experiment, where 8 horses
race every day and probabilities of winning are
1/2,1/4,1/8,1/16,1/64,1/64,1/64,1/64. The winners information
has to be transmitted.

3) The amount of information for a RV FX(x) is
1

logµ PX(x)
,

where µ is the number of levels in the representation, (2 for
binary).

4) Entropy: is the average amount of information of the random
variable. Thus

H(X) =
∑
i

pX(i)log(
1

pX(i)
)

This is also the average code length of the code word.
5) units of information:

bits→ log2

nats→ log
6) Binary entropy function :

H(p) = −p log p − (1 − p) log (1− p), where p is the
probability of occurrence of say 1.

7) For a random variable to have maximum information (entropy),
then the pdf of the RV should be uniform.

8) Properties of the Entropy: Entropy is always a function of the
probability density values and not the RV itself.

a) H(x) ≥ 0
b) Source coding Theorum (by Shannon): Let average

code word be (Lav)
H(x) ≤ Lav ≤ H(x) + 1;
An entropy of H(x) is achieved by coding in blocks of
size N (Ntuples)
N.H(x) ≤ Ln ≤ H(x) + 1

N
;

9) Joint Entropy:

H(x, y) =
∑
x

∑
y

pX,Y (x, y) log
1

pX,Y (x, y)

10) For independent RV’s X,Y,

H(x, y) = H(x) +H(y)

IX. INFORMATION THEORY -2

1) We see that

H(y/X = x) = −
∑
y

p(Y = y/X = x) log p(Y = y/X = x)

2) Conditional Entropy: Average uncertainty left in Y, after know-
ing X

H(Y/X) =
∑
x

pX(x)H(Y/X = x)

This is always less than the total uncertainty in Y.
3) Chain Rule:

H(X,Y ) = H(X) +H(Y/X)

4) Mutual Information between X,Y:

I(x, y) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x).p(y)

The same can also be defined as

I(x, y) = H(X)−H(X/Y ) = H(Y )−H(Y/X)

5) Channel Coding Theorem: I(x,y) is a function p(x) and
p(x/y). In a communication systems, with x as input and y as
output, p(y/x) is given by the channel, i.e, channel commands

this distribution, and p(x) is defined by the system designer. If
we Tx x with p(x), and receive y for a given channel’s p(y/x),
then I(x,y) is fixed; and we want to estimate x from the what
we receive, which is the mutual information (the shared region
in the Venn diagram of the H(x) and H(y) )
Formal definition: For any ε >0, and R < I(x,y), if we transmit
at a rate R, then average probability of error < ε.

We try to optimize by choosing a p(x), which maximizes the
mutual information.

6) Coding Theorem: c ∼= maxp(x)I(x, y). Converse is ”If R >
C, then reliable communication is not possible”.

X. BAND PASS REPRESENTATION -1

1) Why modulation: Antenna Dimensions, Channel characteris-
tics, Multiplexing.

2) Consider a band-pass signals with fc as the center frequency.
Let s(t) be the time-domain representation of the band-pass
signal, and s(f) the frequency domain representation (which
has both +ve component and -ve component). The positive
component of the spectrum is

s+(f) = 2.u(f).s(f)

The time domain representation is

s+(t) =

∫ +∞

∞
s+(f)e−j2πftdt

F−1[2u(t)] ∗ F−1[s(f)]

F−1[2u(f)] ∗ s(t)

The signal s+(t) is called the pre-envelope of s(t). We know

that F−1[2u(t)] = δ(t) +
j

πt
. Thus

s+(t) = s(t) +
j

π.t
∗ s(t)

The Hilbert Transform of s(t) is ŝ(t) =
1

π.t
∗ s(t) where

1

πt
is called the Hilbert Transformer. The Fourier Transform of
Hilbert transform is

H(f) =


−j; iff > 0

0; iff = 0

+j; iff < 0

and |H(f)| = 1; and

∠H(f) =

{
−π
2

; for f > 0
+π
2

; forf < 0

3) Thus Hilbert transformer is a 90 degree phase shifter.
4) Thus s+(t) is a band-pass filter, and as since it has only +ve

part of the spectrum, it is complex signal.
5) Let sl(t) = s+(f + fc), which we get by multiplying with the

carrier of fc, i.e by shifting it to 0 center frequency. Expanding
this, we get

Sl(t) = [s(t) + jŝ(t)]e−j2πfct

sl(t) = x(t) + jy(t)is a low-pass and complex signal, where

x(t) = s(t)cos(2πfct) + ŝ(t)sin(2πfct)

y(t) = −s(t)sin(2πfct) + ŝ(t)cos(2πfct)
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6) Here sl(t) is the low-pass equivalent, which is complex signal
of a real, band-pass signal s(t).

7) Thus while designing, we design the sl(t), and then use this
to get the s(t).

8) This converts the problem of designing a signal for real, band
pass channel to designing a signal for complex, low pass
channel.

XI. BANDPASS SIGNAL REPRESENTATION-2

1) The band-pass signal has an envelope.
2) we have

sl(t) = a(t)ejθ(t)

, where
a(t) =

√
x2(t) + y2(t)

, and

θ(t) = tan-1 (
y(t)

x(t)
)

Thus, s(t) = Re[sl(t)ej2πfct]
Thus

s(t) = a(t)cos(2πfct+ θ(t)

and a(t) is the envelope.
3) Energy conversion in Band-pass signal in terms of a low-pass

equivalent signal.

E =

∫ +∞

−∞
s2(t)dt

=

∫ +∞

−∞
Re[sl(t)e

j2πfct]dt.

=
1

2

∫ +∞

−∞
|sl(t)1|dt+

1

2

∫ +∞

−∞
sl(t)

2 cos 4πfct+ 2θ(t)dt

Now in the second integral as the frequency is twice, we may
assume that the envelope doesn’t change much, and thus the
integral will be negligible. Thus

E ≈ 1

2

∫ +∞

-∞
|sl(t)2|dt

4) The impulse response of the base-band channel is :

H+(f) =

{
H(f); iff > 0

0; otherwise

= u(f).H(f)

Thus
Hl(t) = Hf (f + fc)

So

Hl(f − fc) =

{
H(f); f > 0

0; otherwise

Thus,
H(f) = Hf−fc +H∗l (−f − fc)

h(t) = hl(t)e
j2πfct + h∗l (t)e

−j2πfct

= 2Re[hl(t)e
2πfct]

5) The Hilbert transform of an even signal is odd symmetric,
and for an odd symmetric signal, it’s Hilbert transform is even
symmetric.

XII. DIGITAL MODULATION TECHNIQUES-1

1) Types of modulation:
a) Base-band modulation: if the channel is base-band.
b) Pass-band modulation: if the channel is pass-band.

2) The simplest modulation is mapping the bits to a voltage level
and transmitting a known pulse p(t) with this amplitude.

3) base-band modulated signal equation

x(t) =

∞∑
k=-∞

ak.p(t− kT )

, where p(t)is the base-band modulated pulse.
4) Pass-band modulated signal equation

x(t) =

∞∑
k=-∞

ak.p
′
(t− kT )

, where p
′
(t) is the Pass-band modulated pulse, which is

a base-band pulse p(t), multiplied with a sin / cos signal of
high frequency. The above two techniques are Pulse Amplitude
Modulation (PAM).

5) When PAM pulse, p(t) is rectangular, then demodulation is as
simple as a convolution and sampling at mT intervals.

XIII. DIGITAL MODULATION TECHNIQUES-2

1) Matched Filter concept: Suppose we have a PAM signal

x(t) =

∞∑
k=-∞

akp1(t− kT )

where p1(t) is the pulse (used to convert the digital binary
bits to analog domain signal).Given a channel with impulse
response c(t) and that adds a noise n(t). Let us assume we have
a receive filter Rx Filter which has an impulse response a(t),
whose output is y(t). Also let r(t) be the output after channel
effect (this is given to Rx Filter). Lastly, let p2(t) be the output
of the channel if the input is p1(t). (Also for representation
purposes let p2(t) = p1(t) ∗ c(t), and p2(t) = p2(t) ∗ a(t)).
Then:

r(t) =

∞∑
k=-∞

akp1(t− kT ) ∗ c(t) + n(t)

=
∞∑

k=-∞

akp2(t− kT ) + n(t)

y(t) = r(t) ∗ a(t)

=

∞∑
k=-∞

akp2(t− kT ) ∗ a(t) + n(t) ∗ a(t)

=

∞∑
k=-∞

akp3(t− kT ) + n(t) ∗ a(t)

Now sampler samples y(t) multiples of T (i.e kT). By applying
a matched filter, we use a Rx Filter whose a(t) = p∗2(T − t).
So for case of proving, let’s take consider only a single symbol.

y((k + 1)T ) =

∫ +∞

-∞
a((k + 1)T − τ)(akp2(τ − kT ) + n(τ)dτ

= ak

∫ +∞

-∞
p∗2(τ − kT )p2(τ −KT )

+

∫ +∞

-∞
p∗2(τ −KT )n(τ)dτ

= ak

∫ +∞

-∞
|p2(t)|2dt+Noisecomponentk

= E.ak +Noisecomponentk
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2) Sampling the output of Rx Filter at kT gives the maximum
value of the corresponding symbol’s amplitude ak. Sampling
at any other point in between the symbol will give a lower
value of ak, thus reducing the SNR.

3) The SNR is given by the signal part divided by the noise part.

y(T ) = ak

∫ +∞

-∞
p2(τ)a(T − τ)dτ +

∫ +∞

-∞
n(τ)a(T − τ)dτ

= yx(T ) + yn(T )

4)

SNR =
|yx(T )|2

E[|yn(T )|2]

E[|yn(T )|2] = N0/2

∫ +∞

-∞
|a(T − t)|2dt

XIV. DIGITAL MODULATION TECHNIQUES-3

1) Proving that matched filter gives the maximum SNR: as per
a well known Inequality, Cauchy-Schwartz inequality: for
g1(t), g2(t) we have∫ +∞

-∞
|g∗1(t)g2(t)dt|2 ≤

∫ +∞

-∞
|g1(t)|2dt

∫ +∞

-∞
|g2(t)|2dt

let

g1(t) = a∗(τ − t) and, g2(t) = p2(t)

we get∫ +∞

-∞
|p2(t)a(T−τ)dτ |2 ≤

∫ +∞

-∞
|p2(τ)|2dτ

∫ +∞

-∞
|a(τ−T )|2dτ

∫ +∞
-∞ |p2(t)a(T − τ)dτ |2∫ +∞

-∞ |a(τ − T )|2dτ
≤
∫ +∞

-∞
|p2(τ)|2dτ

∫ +∞
-∞ |p2(t)a(T − τ)dτ |2

N0

2

∫ +∞
-∞ |a(τ − T )|2dτ

≤ 2

N0

∫ +∞

-∞
|p2(τ)|2dτ

SNR ≤ 2

N0

∫ +∞

-∞
|p2(τ)|2dτ

SNR ≤ 2

N0
E

here E is the energy in the p2(t)
2) As per Cauchy-Schwartz inequality, the equation has maximum

value when g1 is an integer multiple of g2. Thus for SNR to
have maximum SNR, we get matched filter a(t) = p∗2(T − t).

3) Thus matched filter gives the maximum SNR.
4) Inter Symbol Interference (ISI): considering the effect of trans-

mitting pulses continuously, we get the sampled output as

y(kT ) = ak ∗ p3(kT ) + n1(kT )

= akp3(0) +

+∞∑
m=−∞;m 6=k

amp3(kT −mT ) + n1(kT )

= symbol energy + ISI(sayg(t) + noise
(6)

Thus we should choose p1(t) such that, we get p3(f) = 1,
with a phase of 0.

XV. DIGITAL MODULATION TECHNIQUES - 4

1) Raised cosine pulse: A pulse of choice for the

sin πt
T

πt
T

cos παt
T

1− 4α2t2T 2

where α ≥ 0. α = 0 is a special case where it’s frequency
response is a rect() and in time domain it is sinc function. [Ref
the video for it’s Fourier transform]. 0 ≤ α ≤ 1

2) Spectrum of above raised cosine pulse:

G(f) =


T ; |F | ≤ 1− α

2T

Tcos2
πT

2α
[|f | − 1− α

2T
];

1− α
2T

≤ |f | ≤ 1 + α

2T

0;
1 + α

2T
< |f |

3) Unit energy signal is φ(t) =

√
2

Ep
p(t) cosωct, which can be

used to express the amplitudes of all the symbols, where Ep is
the energy of the pulse signal.

4) constellation is the representation of the signal in terms of the
unit energy signal.

5) Phase Shift Keying (PSK):

xm(t) = p(t) cos 2πfct+
2π

M
m

0 ≤ m ≤M − 1 and 0 ≤ t ≤ T .
6) The energy of each signal is half of the energy of the pulse,

thus it a constant energy modulation.
7) If don’t want to increase the probability of error in PSK,

simply increase the size of the circle (in the constellation).
This increases the distance between 2 constellations points and
thus maintaining the probability of error while increasing the
number of bits

8) Unlike PAM, PSK needs two unit energy vectors to represent’s
all the constellation diagram.

9) The probability of error is proportional to the distance between
two constellation points.

XVI. DIGITAL MODULATION TECHNIQUES -5

1) Proof that distance to a constellation point is the energy of the
signal.

Energy = =

∞∑
k=-∞

xm(t)dt

=

∞∑
k=-∞

(A2
mφ

2
1(t) +B2

mφ
2
2(t))dt

= A2
m +B2

m

as energy of φx is 1 and each are orthogonal. This is the
distance between origin and constellation point.

2) distance between constellation points m,n for M point constel-
lation:

d2mn =|xm − xn|

= Ep[1− cos
2π(m− n)

M
]

dmin =

√
Ep(1− cos

2π

M
)

3) Quadrature Amplitude Signals (QAM): Joint amplitude modu-
lation of 2 carrier signals.

xm(t) = amp(t) cos 2πfct+ bmp(t) sin 2πfct

for 0 ≤ m ≤M and 0 ≤ t ≤ T
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xm(t) = Re[Vme
jθmp(t)ej2πfct]

, where Vm is the voltage and the θ is the angle of the low-pass
equivalent signal.

V
m=
√
a2m+b2m

and
θm = tan-1 bm

am

4) Basic Linear Algebra Concepts:
a) Field
b) Vector Space
c) Linearly independent vectors: If a vector cannot be ex-

pressed as a linear combination of the rest, for all vectors
in the space, then these vectors are linearly independent.

d) generating set: a set of vectors is generating if any vector
belonging to a vector space can be expressed as a linear
combination of the generating set’s vectors

e) The generating function set which are linearly indepen-
dent is called the basis of vector space V.

XVII. DIGITAL MODULATION TECHNIQUES-6

1) Nyquist’s pulse shaping is used (the Fourier Transform of it
should be 1) to avoid Inter Symbol Interference (ISI).

2) Basic Linear Algebra Concepts (Contd.):
a) Span of a vectors: spanv1,v2,. . . ,vn is a set of vectors all

possible linear combinations of the vectors v1,v2,...,vn.
b) spanv1,v2,v3,.....,vn is ⊂ Vector Space.
c) Span of generating vectors is the whole Vector Space.
d) a vector space U ⊂ V is called subspace iff a linear

combination of two linear vectors in U is also a vector in
U.

e) Length of a vector v =x1,x2,x3,...xn is |v| =√
x21 + x22 + x23 + .....+ x2n

f) distance between 2 vectors d(v,u) = |v − u| =√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y2)2 + .....+ (xn − y2)2

g) length of vector of functions f:

|f | =

√√√√ ∞∑
k=-∞

||f(x)2dx

, which is the square root energy of the signal.
h) We are concerned only about signals/functions that have

finite energy, which form a subspace.
i) distance between two functions/finite energy signals:

d(f, g) = |f − g| =

√√√√ ∞∑
k=-∞

|f(x)− g(x)|2dx

j) Inner product: of two vectors v,u over vector space V of
field F defined using following properties:

< v, v >= |v|2

< αv, v >= α < v, v >

< v, αu >= α∗ < v, u >

for Rn, inner product is defined as

< v, u >=

n∑
i=1

xiyi

for Cn, inner product is defined as

< v, u >=

n∑
i=1

xiy
∗
i

k) orthogonality of two functions v,u: iff ¡v,u¿ = 0.
l) if a vector has length ”1” then it is called normal vectors.

m) set of vectors v1,v2,...vn is orthogonal iff each pair of
vectors is orthogonal.

n) a set of vectors is orthonormal iff it is orthogonal and the
vectors are normal vectors.

o) Deriving a set of orthonormal vectors from a given sets of
vectors V=v0,v1,v2,....vn to express V in terms of these
orthonormal vectors:

Φ0 =
v0
|v0|

Φ1 =
v1− < v1,Φ1 >

|v1− < v1,Φ1 > |

Φ2 =
v2− < v2,Φ1 > − < v2,Φ2 >

|v2− < v2,Φ1 > − < v2,Φ2 > |
... =

...

XVIII. DIGITAL MODULATION TECHNIQUES-7

1) Frequency Shift Keying (FSK):

xm(t) =

√
2E

T
cos 2πfct+ 2π∆f.m.t

2) < xm(t), xn(t) >= Esinc(2T∆f(m−n)) is a sinc function
of ∆, where E is the energy.

3) For what all ∆’s the inner product is zero, i.e., for say m-n=1,
we have

E.sinc(2T∆f) = 0

only if
1

2T
is divides ∆ f

FSK signal set is orthogonal if
1

2T
divides ∆ f

4) Properties of Orthogonal FSK:
a) Constant energy modulation
b) no of constellation points M = N, dimension of signal

space.
c) Bandwidth increases ∝ M
d) Energy and minimum distance

√
2Ecan be kept constant

while no of constellation points increases.
5) Pulse Position Modulation (PPM): p(t) → pulse, then

xm(t) =

√
E

Ep
p(t−m∆t); 0 ≤ m ≤ T − 1

6) PPM is constant energy, M=N, BW ∝ to M.

XIX. DIGITAL MODULATION TECHNIQUES -8

1) Biorthogonal signals set: if

Φ1(t),Φ2(t),Φ3(t)..,Φn(t)

is a set of orthonormal functions. If we then have orthogonal
signals

√
EΦ1(t),

√
EΦ2(t),

√
EΦ3(t)..,

√
EΦn(t)

whose energy is E, then biorthogonal set of signals are
√
EΦ1(t), ..,

√
EΦn(t),−

√
EΦ1(t), ..,−

√
EΦn(t)

2) Properties of Biorthogonal signals: Contant energy, distance
between constellation pairs is not uniform, as M increases M
increases.
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3) PPM is used for ultrawide band application.
4) <u,v >= (<v,u >)∗

5) Main types of demodulation: Correlation Receiver and Matched
filter receiver.

XX. DIGITAL MODULATION TECHNIQUES-9

1) Tranformations on signals that retain the equivalence of modi-
fied signal to original signal set.

a) Translation: reduces the average energy used for transmit-
ted

b) The signal set translated such that the centroid is trans-
lated to origin has the lowest Tx energy requirements.

2) Properties of the translated signal:
a) Energy of the simplex set is less than that of the orthog-

onal signal.

b) Inner product of the simplex signal set m,n is − 1

M

XXI. DIGITAL MODULATION TECHNIQUES-10

1) Why achieving zero ISI is not possible.
a) Channel may not be known at the time of design
b) It may be expensive to implement p(t), a(t) to avoid ISI

completely.
2) Eye Diagram: To visualize the ISI on an oscilloscope. The

output of Rx filter is observed on an oscilloscope with symbol
timing as trigger.[REF the video for the explanation at 12:00
minutes]

3) Immunity to noise (a) in eye diagram is the distance between
the two levels.

4) Sampling timing error immunity (b): if b is large, then the effect
of sampling at different time is better.

5) As the levels increases, the no of levels in the eye diagram also
increase.

6) we can model channel and modulator and de-modulator to-
gether as a discrete channel time channel. If we also include
the mapper, then it discrete in time and amplitude (Such a
model can be used while developing Error correction codes).

7) Mapper: The best way to design a mapper is to minimize the
bit errors such that even if a symbol is detecting incorrectly.
That is the difference between the bits of neighboring symbols
should be minimal. ( Gray Codes: A maximum difference of 1
bit between neighbors)
Gray code Example: 000,001,011,010,110,111,101,100. (can be
used for 8-PSK)
This kind of mapping results in a Ps ≈ Pb, where Ps, Pb
are probability of symbol error, and Probability of bit error
respectively.

8) Gray coding for 16-QAM:

0000 0001 0011 0010
0100 0101 0111 0110
1100 1101 1111 1110
1000 1001 1011 1010

9) There is trade-off between Bandwidth, Average Energy, Bit
Rate and Probability of Error.

XXII. PROBABILITY OF ERROR-1

1) Probability of error depends on the Receiver. (We assume a
system with matched filter which was already proved to be
optimal). And channel is just having AWGN noise with a

variance of
N0

2

yi =

∫ T

0

y(t)Φidt

=

∫ T

0

xm(t)Φidt+

∫ T

0

n(t)Φidt ∗ ∗

= xmi + ni

** assuming xm(t) was transmitted, and ni is the output of
filter Φi(T − t) when excited by n(t).

ni is Gaussian because n(t) is also Gaussian. Also ni has zero
mean because n(t) is zero mean. We shall compute variance
and co-variance between different pairs.

Eni, nj = E

{∫ T

0

n(t)Φi(t)dt

∫ T

0

n(τ)Φj(τ)dτ

}
as the mean is 0

= E

{∫ T

0

∫ T

0

n(t)n(τ)Φi(t)Φj(τ)dtdτ

}
=

∫ T

0

∫ T

0

E {n(t)n(τ)}Φi(t)Φj(τ)dtdτ

here theE {n(t)n(τ)}
is autocorrelation at t− τ

=

∫ T

0

∫ T

0

No
2
δ(t− τ)E {n(t)n(τ)}

=
No
2

∫ T

o

Φi(t)

(∫ T

o

Φj(t)dτ

)
dt

=
No
2

∫ T

o

Φi(t)Φj(t)dt

=
No
2
δi,j

Thus the elements of the noise component vector along
n0,n1,....nN-1 along different basis functions are independent
and thus if xm is transmitted, ym = xm+n0 +n1 · · ·+nN−1

2) Probability of error for binary PAM: Average Probability of
error is Pave in a binary PAM with d as the distance between
the two constellation points:

Pave =
1

1
P

(
y < 0

x = d/2

)
+

1

2
P

(
y > 0

x = −d/2

)
=

1

1
P

(
n < −d/2
x = d/2

)
+

1

2
P

(
n > d/2

x = −d/2

)
= P (n > d/2)

= Q

(
d√
2N0

)
as d= 2

√
Energysymbol

= Q

(√
2E

N0

)

3) Q(x) < e

−x2

2 gives upper bound.
4) for large number of bit transmitted, the BER ≈ Probability of

error.

XXIII. PROBABILITY OF ERROR -2

1) Probability of error: Binary FSK or binary orthogonal signal
set

Pe = Q

(√
Esymbol
N0

)
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2) While calculating the probability of error, we should account
only for those noise components that would shift it outside the
decision region. Thus if a constellation point is represented in
2-D, and one half of the plane corresponds to a constellation
point, We should calculate the probability of error using only
those component that would move it outside the decision
region.

3) In 16-QAM we can calculate the probability of error in terms
of distance and then substitute the energy using the relation
between average energy and distance

4) Probability of error for orthogonal signals can be computed as
follows:

a) Since N=M here, the energy is of the signal transmitted
is
√
E

b) The probabilities of error is same for all constellation
points. Thus let’s say S1 is transmitted, and we received
α at Rx, then the average probability of error for a given
α is simply the product of probability of noise >α

c) Then this probability should also be integrated for all val-
ues of α with the corresponding probability of occurrences
of α.

XXIV. PROBABILITY OF ERROR -3

1) Probability of Error for Bi-Orthogonal: We detect the symbols
by simply considering the absolute values of the vectors com-
ponents.

2) A reasonably good upper bound on Probability of error for
bi-orthogonal modulation is computed using the union bound
shown below:

Suppose E1,E2,. . . En are events with probabilities then Union
bound says that

Pr

(
t⋃
i=1

Ei

)
≤

t∑
i=1

Pr (Ei)

3) Modulated with Memory:

a) consider some Base-band modulation. (where 1 is repre-
sented using some +ve voltage and 0 with 0V). Here the
signal values returns to 0, whenever we transmit a 0.

b) The NRZ scheme is where we change the voltage on
transmission of 1 and we don’t change the voltage if we
need to transmit 0. This a memory modulation.

c) Example of memory coding: Differential Encoding: bk =
ak ⊕ bk−1, where a represents the information bit and b
represents the Tx bit. This is an example in base-band
memory modulation.

d) Another example in Pass-band memory modulation: Dif-
ferential PSK (DPSK). Let’s consider DQPSK- where we
change the phase when there is change in transmitted
symbol.

e) Demodulation of memory signals: can be done by identi-
fying the phase and then canceling/subtracting the previ-
ous phase. Another way is to decode using IQ components
and then multiplying the previous symbol’s signals. The
angle of the product gives the phase difference.

XXV. EQUALIZERS

1) Consider the discrete model of the communication system,
equalizer is placed after the sampled signals are available. The
equalizer design is based one of the following 3 criteria:

a) Peak distortion criteria: Minimize the worst case error
|Ik − Îk| in absence of noise. The equalizer filter’s
response is

C(z) =
1

x(z)

,where c(z) is the equalizer filter, and x(z) is the channel
response of the filter. This is also known as zero forcing.

While this completely eliminates ISI, The drawback of
the peak distortion criteria is that it amplifies the noise.

b) Minimum Square Error criteria (MSE):Unlike peak crite-
rion, here we minimize the expectation of the mean square
of the error.

εk = Ik − Îk
MSE J: = Expectation|εk|2

= Expectation|Ik − Îk|2

C(z) =
1

x(z) +N0

whereN0/2is the variance of noise.

c) Decision Feedback Equalizer: To use ISI effect in the
already detected symbols for better detection of incoming
symbols. This would reduce the order of the matched
filter. The same is done in other direction also, i.e, to use
the information from incoming stream which could carry
information about already detected symbols to improve
the decision of the already detected symbols. Components
of the are:
i) Feed forward filter

ii) Symbol detector
iii) feedback filter

Îk =

0∑
j=−k1

cjyk−j +

k2∑
j=1

ćj Ĩk−j

The filter can be designed based on again Peak distortion and
MSE techniques.

2) Adaptive Equalization: adapting the filtering based on channel
variations.

3) Sequence Estimation: A different approach - not quite the same
as equalizer. Unlike in equalization, where the received signal
is modified and then symbol information is detected, Here we
estimate the sequence that is mostly likely to generate the
received sequence. (similar to Maximum likelihood detection,
where for symbol it is as x̂ = argmaxxf( y

x
).

Vitterbi Algorithm: While the above algorithm says that we
have to wait for all the symbols to be received to decode
even the first symbol, Vitterbi algorithm does enable us to
decode the symbols with some fixed delay. Vitterbi algorithm
is can also useful for decoding a family of codes like block
codes and convolution codes. Particularly, they are used/famous
for decoding convolution codes where a transmitted signal
is passed through a filter to encode and to decode, Vitterbi
algorithm is used to decode the received sequence.

XXVI. SOURCE CODING -1

1) The need for source coding:
a) To remove the redundant information.
b) To reduce the source’s data output rate to match to the

channel’s capacity.
c) Non-uniform distribution of the source.
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2) sampling at or higher than Nyquist’s criteria - lossless source
coding (Winzip, Compress etc,), where as reducing the infor-
mation to fit onto the channel is lossy source coding such
as quantization, vector quantization, subband coding (JPEG,
MPEG).

3) Lossless Source coding for Discrete Memory-Less Sources:
a) A discrete memory less source generates symbols from

the set Xi ∈ {X0, X1, . . . , XM−1}in time, each gener-
ated symbol is a RV and each symbol in the set has a
known probability of occurrence PXi = xi.

b) To make a sampled signal memoryless, we need to sample
the signal at a rate lower than Nyquist’s rate, else sampling
it higher rate will result in signal samples with memory.
So we should sample at exactly Nyquist’s rate to also be
able to reconstruct the signal back.

c) Desired properties of source codes:
i) non-singular codes: xi 6= xj ⇒ C(xi) 6= C(xj).

All the symbols are encoded by different code words
(doesn’t mean that these are always decodable). Sin-
gular codes are not useful.

ii) uniquely decodable:

x1x2x3 . . . xm 6= x́1x́2 . . . x́m

⇒ C(x1)C(x2) . . . C(xm) 6= C(x́1)C(x́2) . . . C(x́m)

Ex: {10, 00, 11, 110}
iii) Prefix or Prefix-free codes or instantaneous codes:

We cannot decode a uniquely decodable code instan-
taneously. We have to wait for future bits. This is
resolved by prefix codes - any codeword should not be
a prefix of any other codeword. Ex: {0, 10, 110, 1110}

4) Huffmann Codes:
a) Arrange the symbols in decreasing probability.
b) Assign 0 and 1 to the last two symbols in the list. (If any

of the last probabilities is a sum of two or more symbols
then the bit assigned should be added to all the symbols
individually).

c) Then combine the probabilities of the last two symbols
and rearrange the probabilities in the decreasing order.

d) Repeat until the sum probability is 1.
5) Properties of Huffmann Code: Is a prefix code, optimum code

- no code better than huffmann code for any RV.
6) A quick way to identify huffmann codes: There will be atleast

2 codes of equal length which only differ in the last two bits.

XXVII. SOURCE CODING -2

1)
Theorem 1. Kraft Inequality: A prefix code with codeword
lengths l1, l2, l3 . . . lM exists if and only if∑

i

2−li ≤ 1

Proof. §1. Necessity: The above condition is necessary for any
code to be prefix-free.
Consider Codeword C(xi) of length = li. Let the max
codeword length be lmax. Then codeword C(xi) disqualifies
2lmax−li codes on the lmax level of binary expansion. As the
descendants are disjoint, all the disqualified codes at lmax level
are ∑

i

2lmax−li ≤ 2lmax

Thus, by both sides by 2lmax we get,∑
i

2−li ≤ 1

§2.Sufficiency: The above condition is sufficient for existence
of the prefix-free codes.
Given the lengths l1, l2, l3 . . . lM in increasing order which
satisfy kraft’s inequality. For a codeword length, we pick a
codeword in binary expansion at the level equal to the codeword
length. As we pick a codeword, it disqualifies some descendants
and thus some at the lmax level. So if for a given codeword
length li if we cannot find any codeword at li level, then all the
lmax codes are also disqualified by definition. Thus the sum
of additional terms of 2li+ would exceed 1, which is against
the given statement. Thus if kraft’s inequality is satisfied, then
a prefix code should be constructed for the given lengths.

2) Kraft’s inequality also holds for uniquely decodable codes. ().
3) Equality means the codes exhaust all the nodes at the lmax

level in binary expansion.
4) Optimal Codes: a code for RV X if there is no code for the

same RV with smaller average length.

Theorem 2. Let L be the average length of any of the possible
optimal code. Then

H(x) ≤ L ≤ H(x) + 1

Proof. §1. For any uniquely decodable code, the expected
length L(C,X) ≥ H(X)

Let z =
∑
i

2−liand qi = 2−li/z.

Known inequality:
∑
i

pilog(
1

qi
) ≥

∑
i

pilog(
1

pi
)

And the above inequality becomes an equality ifpi = qi (7)

Where qi is like a probability mass function. (We take the
known equality without proof).

L(C,X) =
∑
i

pili

=
∑
i

pi

(
log

1

qi
− log z

)
≥
∑
i

pi

(
log

1

pi
− log z

)
≥ H(x)

Thus L is greater than H(x) for decodable code. We can
achieve maximum compression when the inequality becomes
an equality, which can be achieved only if

log(z) = 0⇒
∑
i

2−li = 1

i.e equality in Kraft inequality and

pi = qi = 2li (since z=1)⇒ li = log
1

pi

(8)
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§2. There exists code with L(C,X) ≤ H(x) + 1.
For all i define

li =

⌈
log2

1

pi

⌉
Kraft inequality is satisfied by the above defined lis :

=
∑
i

2−li

=
∑
i

2
log2

1
pi

=
∑
i

pi = 1

There is a prefix code with these lis.

L(C,X) =
∑
i

pi

⌈
log

1

pi

⌉
≤
∑
i

pi

(
log

1

pi
+ 1

)
= H(X) + 1

(9)

XXVIII. SOURCE CODING -3

1) Block-wise source coding: Better compression can be
achieved by coding many symbols together as a block. Instead
of coding symbol by symbol, we take sequence of n symbols.
Thus we have 2n possible sequences each with a probability.
Now code these sequences.

a) consider a sequence of n symbols {X1, X1, X2 . . . , Xn},
then the entropy of the sequence is nH(x) as the RVs are
IID.

b) Let the optimal code for this sequence is nH(x) ≤
Lsqe ≤ nH(x) + 1

c) the average code length L =
Lseq
n

, thus

H(x) ≤ L ≤ H(x) =
1

n

2) The no of values for which probabilities in a block codes have
to be computed are mn, where there are m possible symbols
and the block size of the block codes is n

3) as n→∞ , the number of probabilities also tend to ∞
4) Block codes cannot be applied to scenarios with unknown

statistics.
5) Shannon-Fano-Elias Code (Principle of arithmetic coding) :

Here we use the cummulative probability distribution function
of the symbols. Then for each symbolsiwe code the midpoint

between symbol si and si−1 using lsi =

⌈
log

1

p(x)

⌉
+ 1 bits

(Thus we truncate bits after binary point to a maximum of lsi
bits).

NOTE: The above coded number will be the number just
below the midpoint in the 2l(x) levels between si and si−1

symbols

Now step size in l(x) -bit quantization is [0,λ] is

2−l(x) = 2
−

log
1

p(x)

−1

≤ 2
− log

1

p(x)
−1

=
p(x)

2

(10)

Thus quantization error is less than half-of the probability at x,
p(x) or p(si). Thus we can say that the coded word for symbol
si will never cross beyond p(si−1).

6) Average code length for Shannon-Fano-Elias Code is H(x) + 2
(sub-optimal code by itself, but doing a block coding of SFE
code gives average code of H(x) as n → ∞. That is it is
asymptotically optimal).

XXIX. SOURCE CODING -4

1) Arithmetic coding : Basically SFE code for a large block length
and iteratively coding. Does this sequentially, and thus reduces
the delay in coding. For i tuples (arranged in lexicographical
order):

F (x) =
∑

y(i)≤x(i)
P (y(i))

=
∑

y(i−1)≤x(i−1)

P (y(i−1)) +
∑
yi≤xi

P (x(i−1).xi)

= F (xi−1 − 1) +
∑
yi≤xi

P (x(i−1))P
(
xi|x(i−1)

)
= F (x(i−1) − 1) + P (x(i−))F (xi|x(i−1))

(11)
Thus all we need to compute at iht script is the cumulative
probability term (the last term in the above equation), which
helps in coding iteratively

The code string actually coded will represent a sub-interval
(a,b) in (F (x(i) − 1), F (x(i))). Thus we use ‘a’ as the code
word. And computing the P

(
xi|x(i−1)

)
is the key, which

becomes simple for special cases:

a) I.I.D source P
(
xi|x(i−1)

)
= P (xi)

b) Markov sources P
(
xi|x(i−1)

)
= P (xi|xi−1)

c) For sources with unknown statistics, we use models such
as :

i) Laplace Model:

P
(
Xi = a|x(i−1)

)
=

Fa + 1∑
b(Fb + 1)

ii) Drichlet model:

P
(
Xi = a|x(i−1)

)
=

Fa + a∑
b(Fb + a)

2) Lempel-Zei Code: (- doesn’t explicitly need probabilities to
construct the code.) Here as bits are received, we place them
in the buffer and compare if the string in the buffer is present
in the list. If the string in buffer is present in the list, we shall
wait for the next bit to arrive and use the updated bit sequence
to look for a match in the list. We do this till the last arrive bit
makes a new sequence not present in the list. In such case, we
will use the index of the string minus the last most bit in the
buffer and encode that index and the last bit together against
the complete sequence. This bit is transmitted and also stored
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in the list. (Note: Here the meaning of the last bit in buffer or
list is the most recently received bit in stream).

XXX. CHANNEL CODING

1) Channel coding: To introduce redundancy to be able to correct
errors and distortion introduced by the channel.

2) Purpose of Channel coding:
a) TO reduce the probability of error for finite block of

symbols.
b) To approach channel capacity, we need codes of large

length.
3) The ability to correct errors introduced by channel reduces the

probability of error.
4) For a BSC channel with p=0.25, then the capacity of the

channel is 0.19, thus for 100 bits, only 19 bits can carry
information. Thus we should construct code words of length
100 bits which can carry a maximum of 19 bits. Even then,
recovering all the information is not feasible because of errors
introduced by channel. Thus there is still a probability of error.
Now Shannon-Schwartz equation says that as the block size
increases from 100 to 1000, this probability of error decreases.

5) Code: set of all code words; code word: an element transmitted
6) code-rate: no of information bits/ no of bits transmitted.
7) Repetition codes: Repeating a bit for n− 1 times. Code:{

00000 . . . 0, 11111 . . . 1

}

Code rate =
1

n
. Number of errors that can be corrected:⌊n

2

⌋
8) Parity Check codes: n-1 information bits and a parity bit. Code:{

x = (x0, x1, . . . , xn−1)|
∑n−1
i=0 xi = 0

}
where each xi ∈ {0, 1} and in binary x0 + x1 → XOR and
x0 + x1 → AND. Here we can detect upto 1 error and can
not correct any errors. Rate of code

=
n− 1

n

9) Hamming distance dH(x, y): for n-tuple x, y where x =
(x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) is number of
components that are different in x, y

10)
dmin(C) = mindH(x, y)

where x 6= y and C is the code.
11) For repetition codes, dmin = n, rate = 1

n
and errors that can

be corrected t =
⌊
n
2

⌋
12) For parity dmin = 2, rate = n−1

n

13) Generally, we can correct all the errors in a codeword from

code C, if the number of errors t ≤
⌊
dmin − 1

2

⌋
14) Consider a field

{F→
0,1

}
with + and * as the operators.

15) Hamming codes: (7,4) Hamming code- consider all the non-
zero vectors of length 3 written in columns as below:

H =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


C = {x = (x0, x1, . . . , x6)|HxT = 0}

We know that we can correct max 1 bit error using hamming
codes. Thus dmin = 3. Here the dimension of C = 4 (all the
vectors whose product results in 0; thus no of solutions = matrix
dimension - rank; thus C = 4). So we have 24 codes, and rate
is 4
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16) Some other popular codes are Reed-Solomon codes, BCH
codes, Convolution codes, LDPC codes

XXXI. INTRODUCTION TO OFDM

1) DTFT of x[k] is

X(ejω) =

+∞∑
k=−∞

xke
−jωk

2) DTFT is complex in general, even for real signals
3)

δ[n]
DTFT
==⇒ 1

with a phase of zero.
4) Inverse DTFT :

xn =
1

2π

∫ π

−π
X(ejω)ejωndω

[The definition of DTFT may not converge].
5) DFT: M-length DFT of x[n] is defined as the samples of the

DTFT:
Xk =

1√
M
X(e

j2πk
M )

=
1√
M

+∞∑
i=−∞

xie
−j2πk
M

(12)

6) Inverse DFT:

x[n] =
1√
M

M−1∑
i=0

e
j2πk
M

only if the original time domain signal had less than M
components before sampling the DTFT.

7) The DFT matrix is given by

Dm,n =

e−j2πmnM


where m,n→ o, 1, 2, . . . , xM−1

8) Cyclic convolution: of x and y is defined as z, where

zk =

M−1∑
i=0

xiyk−i

, where k-i is taken modulo M
9) Cyclic shift: If y is the cyclic shift of x i.e, yi =

xi−1((i-1) is taken modulo M) for all i, then

Yk = e−j2πk/MXk

10) length(x|n| ∗ y|n|) = length(x|n|) + length(y|n|)− 1
11) Unitary Matrix U: For a complex U, if U∗- conjugate transpose

of U is also its inverse

U∗U = I

12) another advantage of cyclic prefix: Cyclic convolution can be
used.

13) Power allocation: Using Water pouring method - The noise
variance in the i-th sub-channel is given
dfracσ2|C1|2, where σ2 is the received noise variance and
Ci is the ith coefficient of the channel impulse response, then
power if inverse of
dfracσ2|C1|2.
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XXXII. CONCLUSION

1) Synchronization issues (Carrier, phase and symbol)
2) All the content in this material is about point-to-point commu-

nication.
3) Interference from other users.


