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Abstract—In this paper, the problem of coalition formation 

among Machine-to-Machine (M2M) communication type devices 

and the resource management problem is addressed. Each M2M 

device is characterized by its energy availability, as well as by 

differentiated interests to communicate with other devices based 

on the Internet of Things (IoT) application that they jointly 

serve. Physical ties among devices also exist based on their 

physical distance proximity and communication channel quality. 

Those three factors: energy availability, interest and physical 

ties, are considered into the coalition formation process and the 

coalition-head selection. Each M2M device is associated with a 

holistic utility function, which appropriately represents its degree 

of satisfaction with respect to Quality of Service (QoS) 

prerequisites fulfillment. Given the created coalitions among the 

M2M devices, a distributed power control framework is 

proposed towards determining each M2M device’s optimal 

transmission power in order to fulfill its QoS prerequisites. The 

performance of the proposed approach is evaluated via modeling 

and simulation and its superiority compared to other state of the 

art approaches is illustrated. 

Keywords—Machine-to-Machine (M2M) communication; 

Internet of Things (IoT); coalition formation; interest ties; resource 

management. 

I. INTRODUCTION  

As wireless communication systems and networks evolve, 
the Internet of Things (IoT) is an emerging topic of great 
technical, social, and economic significance. Projections for 
the impact of IoT on the Internet and economy are impressive, 
with some anticipating as many as 100 billion connected IoT 
devices and a global economic impact of more than $11 trillion 
by 2025 [1]. At the same time, however, the IoT raises several 
significant technological challenges that could stand in the way 
of realizing its potential benefits. Among those significant 
challenges, the connectivity of the devices in a wide range of 
IoT applications, e.g., smart grid/metering, smart farming, 
health monitoring, smart homes, etc., arises as one of the most 
interesting research and innovation areas. The Machine-to-
Machine (M2M) communication provides the IoT with the 
connectivity, relying on point-to-point communication using 
embedded hardware modules on the M2M connected devices 
and wireless networks. More specifically, M2M 
communication seeks spectrally- and energy-efficient ways to 
provide ubiquitous connectivity among a massive number of 
low-cost devices without, or with, minimal human interaction.  

A. Related Work 

In the vast majority of IoT applications, energy-efficiency 
has become an important objective in resource allocation due 
to the growing proliferation of M2M devices, which are often 
battery operated and deployed in areas where frequent human 
access or battery replacement is not always feasible [2]. 
Therefore, towards overcoming the wireless access congestion 
problem and, in parallel, to improve the energy efficiency of 
M2M devices, the joint clustering of devices and resource 
management arises as a promising solution. Various M2M 
devices clustering methods have been proposed in the recent 
literature based on different criteria, e.g., M2M devices’ 
achievable signal to interference plus noise ratio [3], 
transmission delay [4], etc. An immediate and intuitive benefit 
of such clustering results from the induced hierarchy for 
management and control. 

The notion of “data priority” has been also proposed in the 
literature, which means that the data flows from specific M2M 
devices have higher priority to be transmitted and collected 
compared to others. The criterion of data priority has been also 
considered towards proposing energy-efficient and congestion-
mitigated clustering algorithms and resource management 
approaches. In [5], the authors study a healthcare IoT 
application, where the devices’ clustering is based on the 
health-based priority of their transmitted data. In [6], the 
authors propose a data-centric clustering in a resource-
constrained M2M network by prioritizing the quality of overall 
data over the performance of individual devices. Moreover, in 
[7] the problem of energy-efficient clustering is studied by 
jointly considering cluster formation, transmission scheduling 
and power control, while the transmission powers of the 
scheduled devices are considered towards ensuring concurrent 
reliable transmissions in the cluster structure. Furthermore, in 
[8] the authors assume an existing clustering and they enforce 
the cluster-head to coordinate the congestion within the cluster 
via assigning weights to the devices based on criteria like 
priority of data, energy availability, and mobility of the 
devices.   

B. Paper Contributions 

In this paper, it is the first time in the literature to the best 
of our knowledge that a joint interest, energy and physical-
aware framework for coalitions formation among wireless IoT 
devices and an energy-efficient resource allocation in M2M 
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communication is proposed. In our proposed framework, the 
notion of coalitions is adopted instead of clusters, due to the 
fact that the M2M devices choose to create a collaborative 
union / partnership based also on their mutual interest to 
communicate with each other. Moreover, M2M devices’ 
energy availability and physical awareness, referring to 
topological characteristics and communication channel quality, 
are considered in order to create more efficient and accurate 
coalitions. The proposed framework consists of two 
fundamental stages. At the first stage, the interplay of interests’ 
interactions among wireless IoT devices and their energy levels 
are exploited towards establishing coalitions among devices by 
also considering the physical proximity constraint and the 
communication channel quality. A coalition-head will be 
periodically determined for each coalition in a reasonable 
window of timeslots. The coalition-head is in charge of more 
functionalities and responsibilities, i.e., data aggregation, 
processing, data compression before relay, transmission to the 
central data aggregator / evolved NB (eNB), etc., compared to 
the rest of the M2M devices.  

At the second stage, the Quality of Service (QoS) 
prerequisites of M2M devices are formulated via a holistic 
utility function, which can easily adapt to different IoT 
applications due to its generic form, thus providing us the 
benefit of a universal proposed approach. Each M2M device 
aims at the maximization of its utility in a selfish and 
distributed manner towards fulfilling its QoS prerequisites. An 
energy-efficient resource allocation framework is proposed as a 
distributed optimization problem of each M2M device’s utility 
function towards determining the optimal transmission power 
of each wireless IoT device. Simulation results show that the 
proposed framework can form wireless IoT devices’ coalitions 
rationally among a group of M2M devices, allocate the 
resources in an energy-efficient manner and therefore jointly 
guarantee the coordination of the devices, increase the energy-
efficiency of the overall system and prolong the battery-life of 
the M2M devices. 

C. Paper Outline 

The remaining part of the paper is organized as follows. 
Section II elaborates the details of the adopted system model. 
In Section III, the interest, energy and physical ties among the 
M2M devices are presented, towards explaining the criteria of 
coalition formation among the M2M devices. In Section IV, 
the methodology towards selecting the coalition-head is 
presented, as well as the actual proposed framework for the 
coalition formation. In Section V, the energy-efficient resource 
allocation problem is formulated and solved in a distributed 
manner. The performance of the proposed approach is 
evaluated in detail through modeling, simulation and 
comparisons with other methods in Section VI. Finally, Section 
VII concludes the paper. 

II. SYSTEM MODEL 

We consider the uplink of a Long Term Evolution (LTE) / 
LTE-Advanced Machine-to-Machine (M2M) communication 
type network consisting of an evolved NB (eNB) and multiple 
LTE based M2M devices, e.g., sensors, actuators, etc. The eNB 

serves a region   and covers an area of radius 
0R , supporting 

multiple types of requested services by the M2M devices. 

Furthermore, within the region   there are deployed M  

M2M devices, where their corresponding set is denoted by 

 1,..., ,...,M m M . These devices can be placed at any 

possible locations, e.g., in offices to homes/apartments, in 
farms, factories, etc., supporting various IoT applications, e.g., 
smart homes: smart thermostats, smart lighting systems, smart 
factories: logistics, etc. The sensors can collect data as per their 
functionality and send the same to the central application 
controller. Considering sensors’ data collection, two types of 
communication are possible: (a) eNB-M2M communication, 
i.e., each device communicates through the eNB and (b) direct 
M2M communication, i.e., direct communication among M2M 
devices. In this paper, we consider direct M2M 
communication. 

Towards improving the energy-efficiency and mitigating 
the congestion of the overall system, as well as prolonging the 
life-time of the M2M devices, the concept of coalition 
formation among the M2M devices is proposed. The M2M 

devices create C  coalitions among each other and the 

coalitions’ set is denoted as  1,..., ,...,C c C . Each coalition 

c  has a coalition-head 
cch , 

cch M , who is in charge of 

collecting the data from the cM  M2M devices belonging to 

the coalition ,c c C , and forwarding the information to the 

eNB for further processing and dissemination. Moreover, the 
radio resources can be divided into timeslots (TDMA) or 
resource blocks (OFDMA) to be allocated to the individual 
M2M devices. Thus, the only existing interference to the 
devices’ transmissions stems from the thermal noise 
components and the M2M devices’ control signals, which can 
be regarded together as an Additive White Gaussian Noise 

(AWGN) process, with constant power density 
0I . In the rest 

of this paper, the terms wireless IoT devices and M2M devices 
will be interchangeably used. 

III. INTEREST, ENERGY AND PHYSICAL TIES IN M2M 

COMMUNICATION  

The interest, energy and physical behaviors of M2M 
devices have a strong impact on the efficacy and efficiency of 
M2M communication. Within an IoT application, the M2M 
devices have different interests to interact with each other in 
order to achieve a common goal, thus they are willing to form 
coalitions. For example, in a smart home application there are 
included many M2M devices, e.g., smart thermostats, 
connected lights, smart fridge sensors, smart door lock sensors, 
etc. The smart thermostats and the sensors measuring the 
temperature have greater interest to communicate with each 
other, form a coalition and transmit their data to the coalition-
head, which further transmits all the collected data to the eNB 
for further exploitation and decision making from the end-
user’s side, e.g., increase the average temperature via remotely 
accessing the smart thermostat. The same holds true for the set 
of sensors participating in the smart lighting system or smart 
fridge application and so on and so forth.  

Except for the interest of interaction among IoT devices, 
their energy availability, their physical proximity and channel 
quality should be considered in order to form the coalitions and 
select the coalition-head. The concept of considering the 



communication interest among the M2M devices in order to 
form the coalitions among them is one of the fundamental 
novelties of this paper. As explained in Section I.A, the 
majority of the literature considers only physical related 
parameters, e.g., distance among the devices, energy-
efficiency, etc., or network related parameters, e.g., 
transmission delay, signal-to-interference-plus-noise ratio, etc., 
in order to organize the M2M devices into clusters, without 
considering their real need to exchange information among 
each other in order to efficiently operate within a smart IoT 
application.  

A. Communication Interest among Wireless IoT Devices 

In the proposed framework, interest ties measure the 
strength of the relation between M2M devices that are related 
to each other. This relation among devices is established, 
while considering the operation of each M2M device and its 
involvement to a specific IoT application. In the proposed 
framework, the notion of interest ties is used towards 
reflecting the weak or strong interest connections and 
interactions between M2M devices. Therefore, reliable M2M 
communication links are established within a group of M2M 
devices for energy-efficient data transmission. 

Based on the devices’ interest to communicate with each 

other, we present the interest ties among the M  wireless IoT 

devices by a symmetric matrix  m,m M M
I  
 i , where each 

element 
m,mi  (or equivalently

m ,mi ) expresses the interest of 

the mth device to communicate and exchange information with 

the m th device. We assume that the devices m and m΄ have 

the same interest to communicate with each other, thus the 

interest matrix I is symmetric. The interest degree 
m,mi  ranges 

from zero to one, i.e.,  m,m 0,1 i  , where the values close to 

zero reflect less interest of communication among the two 
devices, while the values close to one show willingness of 
close collaboration among the devices. We propose a 
threshold based M2M link establishment, i.e., an M2M link 
among two wireless IoT devices is established if their interest 

tie is above a threshold 
thri ,  thr 0,1i  . It is noted that 

different interest thresholds can be assumed for different IoT 
applications, thus the proposed communication interest metric 
can be applied in various IoT applications. 

B. Availability of Energy 

The majority of wireless IoT devices are battery-enabled 
with limited energy and constrained battery life, thus 
considering their energy-availability in the coalition formation 
process, as well as for selecting the coalition-head is critical. 
Acting as a coalition-head results to increased battery 
consumption for the wireless IoT device, due to the collection, 
processing and transmission of a large amount of data to the 
eNB. Thus, the coalition-head should periodically change in 
order to guarantee fairness among the wireless IoT devices. 
Let us denote the available energy of each wireless IoT device 

as 
mE , m M . Each wireless IoT device is characterized by 

an energy availability (EA) indicator, i.e., 
 
m

m

m
m M

E
EA

max E 
 

 , 

where  0 1mEA , . The energy-availability factor expresses 

the relative energy-availability of each M2M device and will 
be considered in the coalition-head selection process (Section 
IV.A).  

C. Physical Ties 

Towards establishing an energy-efficient M2M link among 
the wireless IoT devices, the physical proximity of the 
devices, as well as the quality of their communication channel 
should be considered. We adopt a symmetric matrix 

 m,m M M
Q  
 q  towards indicating the physical proximity 

and channel quality between the mth wireless IoT device and 

the m th device. For simplicity purposes, and without loss of 

generality, we assume the same communication channel gain 
among the devices m and m΄ and vice versa. We set the range 

of
m,mq , as  m,m 0,1 q  and we assume that the physical 

proximity and channel quality degree between two wireless 

IoT devices is directly proportional to the value of
m,mq . A 

threshold value 
thrq  is considered in our proposed framework, 

where if 
m,m thr q q  an M2M communication link among 

m,m  devices can be potentially established. 

IV. COALITION FORMATION 

A. Coalition-Head Selection 

Let us consider a subset M M   of wireless IoT devices, 

which will be a candidate coalition over the set of all wireless 
IoT devices M . A coalition-head should be selected among 
the IoT devices that have already established the coalition, 
towards collecting their data and reporting them to the IoT 
data aggregator/eNB and vice versa send requests and/or 
commands to the wireless IoT devices. A representative 

Importance Factor (
mIF ) is defined for each M2M device 

m,m M ,M M    showing its importance to be selected as 

a coalition-head, while considering the overall interest, energy 
and physical ties, related to this device m . 

Let us define the 
mIF  for each wireless IoT device 

m,m M ,M M    as follows: 

m m m,m m,m

m M

IF EA , m,m M ,m m 



      i q    (1) 

where 
mEA  considers the energy availability of the mth M2M 

device and m,m m,m

m M

 



 i q  synthetically represents the interest 

of the rest of the devices within the coalition to communicate 
with the mth device, while considering their physical 
proximity, as well as their communication channel quality. 

Then, the coalition-head cch  of the coalition M M   is the 

mth wireless IoT device that has the maximum importance 

factor mIF , i.e.,  c m
m M

ch arg max IF


 . 

B. Coalition Formation 

A multi-factor coalition formation process is proposed 
considering the interest ties and the physical proximity and the 
transmission channel quality ties among the M2M devices, as 



well as their energy availability in order to select the coalition-
head. An iterative methodology is proposed towards 
determining the coalitions among the wireless IoT devices 
within a group of devices. The main steps of the proposed 
coalition formation methodology are as follows: 

1. Initially, we consider the whole set of wireless IoT 
devices, i.e., M , as an initial coalition, thus M M  . 

2. For the considered coalition M  , the coalition-head can be 
determined via utilizing equation (1) and we 

have  c m
m M

ch arg max IF


 . 

3. Considering the rest of wireless IoT devices in the 

coalition M  , if the following conditions hold true 

 
c

c

m,ch thr

m,ch thr c, m M - ch



  

i i

q q  
 

then the mth wireless IoT device belongs to the same coalition 

as 
cch . The devices that do not satisfy the above conditions 

formulate another coalition M M  . 

4. Set M M M     and if 1M    go to step 2, otherwise 

stop. 

Based on the above coalition formation methodology, we 
are able to dynamically determine (a) the number of 
coalitions, (b) the specific ID of the M2M devices that belong 
to each coalition, and (c) the coalition-head of each coalition. 
The coalition formation algorithm can be executed per 
timeslot or for more practical and realistic scenarios per a 
reasonable window of timeslots, where the interest, energy 
and physical ties will have a substantial difference. 

V. ENERGY-EFFICIENT RESOURCE ALLOCATION 

Towards treating M2M devices’ diverse and multiple QoS 
prerequisites under a common optimization framework, the 
concept of utility function is adopted. Each M2M device 

,m m M  adopts a utility function towards expressing its 

Quality of Service (QoS) prerequisites, which are differentiated 
per type of IoT application that the M2M device participates. 
The adopted utility function is a continuous, differentiable 

function with respect to M2M device’s transmission power 
mP  

and is given as follows: 

 
 m m

m m

m

W f
U P

P


     (2) 

where W is the system’s bandwidth and  m mf   is M2M 

device’s efficiency function representing the successful 
transmission probability of M2M device m belonging in 

cluster c to its cluster-head 
cch . The efficiency function 

 m mf   is a continuous, differentiable and increasing 

function of 
m  and has a sigmoidal shape such that there 

exists argt et

m  below which  m mf   is convex and above which 

 m mf   is concave. For presentation purposes, we adopt 

   1 m
M

A

m mf e
 

  , where A, M are real valued parameters 

controlling the slope of the sigmoidal-like function [9]. It is 

noted that for different IoT applications differentiated argt et

m  

are requested by the M2M devices. These differentiated M2M 
devices’ QoS prerequisites can be captured by the adopted 
efficiency function via the control parameters A and M. 

The goal of each wireless IoT device is to maximize its 
perceived satisfaction from the resource allocation towards 
extending its battery-life. Towards achieving this goal, the 
maximization of each M2M device’s utility is performed via 
determining the optimal transmission power in a distributed 
manner. Therefore, the maximization problem of each M2M 
device’s utility function is formulated as follows. 

 
0 Max

m m

m m
P ,P

max U P
 
 

    (3) 

where Max

mP  is the maximum available power of the mth M2M 

device. The above optimization problem has a unique optimal 
transmission power, due to the form of the utility function 
which can be easily proven that it is quasi-concave with 

respect to the M2M device’s transmission power 
mP . 

Therefore, the optimal transmission power *

mP of each M2M 

device is given as follows: 

0

*

* Maxm

m m

m

I
P min ,P

G

 
  

 
   (4) 

where *

m  is the unique positive solution of the equation 

 
0

m m

m

U P

P





. Based on the above presented analysis, it is 

concluded that each M2M device can determine in a 
distributed manner its optimal transmission power, while 
considering its communication channel conditions, as well as 
its QoS prerequisites fulfillment. 

VI. NUMERICAL RESULTS 

In this section, we provide some numerical results 
evaluating the operational features and performance of the 
proposed framework. Initially, in Section VI.A we focus on 
the operation performance achieved by our proposed 
framework, in terms of scalability, energy saving and 
prolongation of M2M devices’ battery life. Then, in Section 
VI.B, we provide a comparative evaluation of our proposed 
approach against other existing approaches in the literature 
with respect to several metrics, e.g., energy consumption and 
system’s scalability. 

A. Proposed Approach: Properties and Operation   

In the following, we consider a wireless IoT environment 
consisting of a number of wireless IoT devices |M|=50 
randomly distributed in a square coverage area 200m x 200m 
and the eNB resides at the center of the square. The duration 
of each timeslot is 0.5msec. Three different simulation 
scenarios are considered as follows: (a) random interests 
among M2M devices, (b) best-case scenario, i.e., the M2M 
devices that are close to each other have high interest to 
communicate and the M2M devices that are far from each 
other have small communication interest, and (c) worst-case 
scenario, i.e., the exact opposite conditions compared to the 
best-case scenario hold true.  

 



 
Fig. 1. Total consumed energy as a function of the network size. 

Fig. 1 represents the total consumed energy in the network 
as its size increases for a specific timeslot considering the 
formulated coalitions among the M2M devices. The results 
reveal that in the case of high interests among neighbor M2M 
devices (i.e., best-case scenario), the corresponding created 
coalitions among them contribute to energy saving. The above 
outcome is observed due to the fact that M2M devices with 
high communication interest reside close to each other, thus 
their communication channel conditions are good and their 
corresponding power consumption is low. The exact opposite 
holds true in the case that the M2M devices with high 
communication interest reside far from each other (i.e., worst-
case scenario). In the latter case, the M2M devices spend a lot 
of energy to communicate due to their deteriorated channel 
conditions. The third scenario with random communication 
interests among the M2M devices represents an average state 
of a wireless IoT environment where M2M devices with high 
communication interest reside in an average distance among 
each other, thus the corresponding total power consumption of 
the devices lies in the middle of the best and worst-case 
scenario. Moreover, the results of our proposed approach, as 
presented in Fig. 1, show the scalability of our algorithm 
supporting a large number of M2M devices. 

Fig. 2 illustrates the energy consumption of the three 
scenarios discussed above, as time evolves, i.e, for 500 
timeslots, considering |M|=50 M2M devices. The results 
reveal that the proposed framework achieves the stability of 
the overall system with respect to the total power 
consumption. More specifically, the coalitions, as well as the 
corresponding coalition-heads may vary as the time evolves, 
however the formulated coalitions achieve stability with 
respect to the overall transmission power of the M2M devices. 
Moreover, the total consumed power follows the same trend as 
presented above considering the three scenarios, i.e., the best 
and worse-case scenario have the least and maximum power 
consumption, respectively, while the scenario with random 
communication interests among the M2M devices is 
characterized by an average power consumption. 

Fig. 3 presents the percentage of M2M devices that run out 
of battery (i.e., “dead” devices) as the time evolves. For 
demonstration purposes only and without loss of generality, 
we assume that the initial available energy of each M2M 
device is Em=0.01mJ. The results reveal that the M2M devices 
in the worst-case scenario run sooner out of battery, while the 
opposite holds true for the best-case scenario, due to the fact 
that the M2M devices consume less power per time slot (Fig. 
1), as well as the time evolves (Fig. 2). 

 

 
Fig. 2. Energy consumption as a function of the time. 

 
Fig. 3. Percentage of devices that run out of battery as a function of time. 

B. Comparative Evaluation   

In this subsection, we provide a comparative study 
illustrating the benefits of jointly considering interest and 
physical ties among the M2M devices in order to create the 
corresponding coalitions. Specifically, we compare three 
different approaches considering the coalition formation 
process, as follows: 
a. The proposed coalition formation approach as it has been 

proposed in this paper, which considers jointly the interest 
and physical ties among the M2M devices, as presented in 
Step 3 of the Coalition Formation algorithm in Section 
IV.B. This coalition formation scenario is called i-q-
approach. 

b. Considering only the physical ties among the M2M 
devices in order to create the coalitions, i.e., q-approach, 
and 

c. Considering only the interest ties, i.e., i-approach. 
It is noted that especially in the q-approach the M2M 

devices will create coalitions based on their physical 
proximity and their good communication channel conditions 
without however having high interest to communicate with 
each other. Therefore, the corresponding coalition-head per 
each coalition will mainly act as a relay reporting to the eNB 
the collected information from the M2M devices in the same 
coalition for further exploitation. For example, assume a room 
where sensors of temperature and light coexist and belong to 
the same coalition due to physical proximity and the coalition-
head is a smart M2M thermostat. The smart thermostat will 
collect the data from the sensors of temperature, aggregate, 
process them and perform one transmission of the processed 
information to the eNB. On the other hand, considering the 
information collected from the light sensors, the smart 
thermostat coalition-head will act as a relay to transmit their 
information to the eNB for further processing and 
exploitation.  



 
Fig. 4. Total consumed energy as a function of the network size considering 

three comparative scenarios: (a) i-q-approach, (b) q-approach and (c) i-

approach. 

On the other hand, considering the i-approach, where the 
coalitions are formed based only on M2M devices 
communication interests, the above presented multi-
transmission problem from the coalition-head’s side is solved, 
due to the fact that the coalitions will be formed with M2M 
devices which have high interest to communicate with each 
other. Thus, the coalition-head will first collect the 
information from all the M2M devices in the same coalition, 
process it and then transmit it to the eNB.   

Towards comparing the above presented scenarios in a fair 
manner, we propose the Interest-based Aggregation Efficiency 
(IAE) factor, as follows: 

, c

c

c m ch

m M

IAE M i


      (5) 

Considering the smallest following integer of IAE, i.e., 

IAE   , we determine the number of transmissions that each 

coalition-head should perform in order to report the collected 
data from its M2M devices residing in the same coalition to 
the eNB, either acting as relay or transmitting a processed 
group of collected data. In Fig. 4, we compare the total 
consumed energy under the three different comparative 
approaches (i.e., i-q, i and q-approach) as a function of the 
network size. The comparison of the three different coalition 
formation approaches reveals the pure benefits in energy 
saving, while considering jointly the interest and physical ties 
among the M2M devices in order to form the coalitions. The 
main drawback of the q-approach is that the coalition-heads 
have to perform multiple transmissions (i.e., large values of 

IAE   ) in order to report the collected data to the eNB. On 

the other hand, the main drawback of the i-approach is that the 
M2M devices in the coalition may reside in large distances 
among them, thus they consume increased transmission power 
to send their data to the coalition-head, which needs few or 
even one transmission to send the processed data to the eNB 

(i.e., small value of IAE   ). The combined benefits of 

physical proximity and increased communication interest 
among devices is achieved by the i-q approach, which results 
to decreased energy consumption. 

VII. CONCLUSIONS 

In this paper, the problem of interest, energy and physical-

aware coalition formation and resource management in smart 

IoT applications is studied. The concept of interest ties among 

M2M devices is introduced, towards expressing their 

communication interest depending on the involved IoT 

application. The interest ties along with the physical ties and 

M2M devices’ energy availability are considered in order to 

form coalitions among them and select the corresponding 

coalition-head. A distributed resource management 

mechanism is proposed towards determining the optimal 

transmission power of each M2M device in order to fulfill its 

QoS prerequisites. In the future, the authors would like to 

broaden the area by implementing and testing the proposed 

framework in a realistic testbed environment, where multiple 

M2M devices participating in different IoT applications with 

different corresponding interest ties will be included. Towards 

this direction, an IoT Lab is being developed within the 

Institute for Systems Research at the University of Maryland, 

College Park.  
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